MA/CSSE 473

Day 36 ® o

“~>
s T ©

Kruskal proof recap

Prim Data Structure
and detailed
algorithm.

Recap: MST lemma

Let G be a weighted connected graph with a MST T;
let G’ be any subgraph of T, and let C be any connected
component of G'.
If we add to C an edge e=(v,w) that has minimum-
weight among all edges that have one vertex in C and
the other vertex not in C,

then G has an MST that contains the union of G’ and e.

[WLOG v is the vertex of e that is in C, and w is not in C]

Proof: We did it last time v

Recall Kruskal’s algorithm

e To find a MST:

e Start with a graph containing all of G’s n
vertices and none of its edges.

e fori=1ton—1:

— Among all of G’s edges that can be added without
creating a cycle, add one that has minimal weight.

Does this algorithm produce an MST for G?

Does Kruskal produce a MST?

e Claim: After every step of Kruskal’s algorithm, we
have a set of edges that is part of an MST

e Base case ... Work on the quiz questions

) with one or two other students
e Induction step:

— Induction Assumption: before adding an edge we have a
subgraph of an MST

— We must show that after adding the next edge we have a
subgraph of an MST
— Suppose that the most recently added edge is e = (v, w).

— Let C be the component (of the “before adding e” MST
subgraph) that contains v
¢ Note that there must be such a component and that it is unique. 4

— Are all of the conditions of MST lemma met? =" @

— Thus the new graph is a subgraph of an MST of G v

Does Prim produce an MST?

e Proof similar to Kruskal.
¢ |t's done in the textbook

Recap: Prim’s Algorithm for
Minimal Spanning Tree

e Start with T as a single vertex of G (which is a
MST for a single-node graph).

e fori=1ton—1:

— Among all edges of G that connect a vertexin T to
a vertex that is not yet in T, add to T @ minimum-
weight edge.

At each stage, T is a MIST for a connected subgraph
of G. A simple idea; but how to do it efficiently?

® @
Many ideas in my presentation are from Johnsonbaugh, Algorithms, =" =" e

2004, Pearson/Prentice Hall v

Main Data Structure for Prim

e Start with adjacency-list representation of G

e Let V be all of the vertices of G, and let V; the subset
consisting of the vertices that we have placed in the
tree so far

e We need a way to keep track of "fringe vertices"

— i.e. edges that have one vertex in V;
and the other vertex in V-V,

e Fringe vertices need to be ordered by edge weight
— E.g., in a priority queue

e What is the most efficient way to implementa_.- = :

-
[

priority queue? W

Prim detailed algorithm step 1

* Create an indirect minheap from the adjacency-
list representation of G
— Each heap entry contains a vertex and its weight
— The vertices in the heap are those notyetin T
— Weight associated with each vertex v is the minimum
weight of an edge that connects v to some vertexin T
— If there is no such edge, v's weight is infinite
e Initially all vertices except start are in heap, have infinite
weight
— Vertices in the heap whose weights are not infinite are
the fringe vertices
— Fringe vertices are candidates to be the next vertex °

(with its associated edge) added to the tree v

Prim detailed algorithm step 2

e Loop:
— Delete min weight vertex w from heap, add itto T

— We may then be able to decrease the weights

associated with one or more vertices that are adjacent
tow

Indirect minheap overview

e We need an operation that a standard binary
heap doesn't support:
decrease(vertex, newWeight)
— Decreases the value associated with a heap element
— We also want to quickly find an element in the heap
¢ Instead of putting vertices and associated edge
weights directly in the heap:
— Put them in an array called key[]
— Put references to these keys in the heap

Indirect Min Heap methods

operation description run time

del() delete and return the (location in key|[] of ©(log n)
he) minimum eleme

keyVal(w) The weight associated with vertex w 6(1)
(minimum weight of an edge from that
vertex to some adjacent vertex that is in the
tree).

Indirect MinHeap Representation
« 15]70] 7 [85[92/10]19(63] pray the tree
into diagram of
[2]8[1[7[5]3]6]4] e el
= 3]1]6][8][5]7[4]2]

outof[i] tells us which key is in location i in the heap
into[j] tells us where in the heap key|j] resides
into[outof[i]] =i, and outof[into[j]] =]j.

To swap the 15 and 63 (not that we'd want to do this):

temp = outof[2]

outof[2] = outof[4]

outof[4] = temp

temp = into[outof[2]] -
into[outof[2]] = into[outof[4]] =" e
into[outof[4]] =

temp v

MinHeap class, part 1

“class MinHeap:

E men Implements an indirect heap so it can efficiently support
the Isin and Decrease operations that are not
supported efficiently by an ordinary binary heap. """

def init (self, key):
"rnrkey: list of wvalues from which we build initial heap"""
self.n = len(key)-1
self.key = key
self.into = [1i for i in range(self.n + 1)]
self.outof = [1 for i in range(self.n + 1)]
self.heapifv ()

def heapify(s=If):
for i in range(self.n//2, 0, -1):
self.siftdown(i, self.n)

e e
-".-‘ []
-
MinHeap class, part 2
def siftdown(s=l1f, i, n):
" sift down for a minHeap. 1 is the
heap index, outof[i] is index into key array)"""
s = self.outof[i]

temp = self.key[s]
while 2*%i <= n:
c = 2%1i # ¢ is for child
if ¢ €« n and self.key[self.outofl[ct+l]] < A\
self.key[self.outof[c]]:
c += 1
if self.key[self.outof[c]] < temp:
self.outof[i] = self.outoflc]
self.into[self.outof[i]] = i
else:
break
i=2c
self.outof[i] = s :

self.into[s] = 1i i

MinHeap class, part 3

def delete(s=lf):
mmrdelete the mimimum value and return it"""
result = self.outof[1]
temp = self.outof[l]
self.outof[l] = self.cutcflself.n]
self.into[self.ocutof[1]] = 1
self.outof[self.n] = temp
self.into[temp] = self.n
self.n —= 1
self.siftdown(l, self.n)
return result

def isIn(self, w):
rer returns True iff key[w] is in this heap """
return self.into[w] <= self.n

def keyVal (s=l1f, w): ® e
mer returns the weight corresponding to w™"" =" e

return self.keyl[w] ’

MinHeap class, part 4

def decrease(sslf, w, newWeight) :
mer change the weight corresponding to
vertex w to newWeight (which must be no
larger than its current weight) """
p is for parent, c is for child
self.key[w] = newWeight
c = gelf.into[w]
p =c//2
while p >= 1:
if self.keylself.cutof[p]] <= newWeight:

break
self.outof[c] = s=lf.outofp]
self.into[self.outof[c]] = c
- =P
p =c//2 e
self.outof[c] = w [

self.into[w] = c l'

Prim Algorithm

INFINITY = 1234567820
VERTEX = 0 # An edge is a list of two numbers:
WEIGHT = 1 # These are what the subscripts (0 and 1) mean.

def prim(adj, start):

rrr parent[v] = parent of v in MST rooted at start """
n = adj.length() # wvertices in graph
key = [None] + [INFINITY]*n # later they will be decreased
parent = [None] + [0]*n # placeholders
keylstart] = 0
parent [start] = 0
heap = MinHeap(key) # non-infinity wvalue in heap represents fringe ver
for i in range(l, n+l):
v = heap.delete ()
edges = adj.getlList(v) # =2ll vertices adjacent to v
for edge in edges: # an edge is a list cof: other wertex and weight

w = edge [VERTEX]
if heap.isIn(w) and edge[WEIGHT] < heap.keyVal (w) :
parent[w] = v
heap.decrease (w, edge[WEIGHT])
return parent

def edgeListFromParentArray(parent):
result = []
for 1 in range(l, len(parent);):
if parent[i] > 0:
result.append([parent[i], 11}
return result

tex

AdjacencyLlistGraph class

clazs AdjancencyListGraph:
def _ init__ (self, adjlist):
gelf.vertexlist = [v[0] for v in adjlist]
gelf.adjacencylist = [Vertex(v) for v in self.vertexlist]
for v in adjlist:
gelf.getVertex({v[0], w[1]}

def getList({zelf, v):
for ver in selif.adjacencylist:
if ver.v == vi
return wver.adj
return None

def length(self):
return len({self.adjacencylList)

def setvertexigelf, v, vList):
i = gelf.vertexlist.index (v}
for v in vList:
if w[0] not in self.vertexlList:
print "Illegal vertex in graph"
exit ()
self.adjacencylList([i].add{v)

MinHeap implementation

An indirect heap. We keep the keys in place in an array,
and use another array, "outof", to hold the positions of
these keys within the heap.

To make lookup faster, another array, "into" tells where

to find an element in the heap.

e i=into[j] iff j=outoffi]
Picture shows it for a maxHeap, but the idea is the same:

key

GBJ 12 lBlZ{ ZSI

8

[1091 7 ‘ 18‘

312

/\ 1 2 3 4

w

6 7 8

into
O S annnnnnn
18/\8 ?/\25 outof ."':-_-f::
/ nooooooal o

def

def

def

init (szelf, key):

'””'key:_list of values from which we build initial heap"""

zelf.n = len(key)-1

zelf.key = key

gelf.into = [1 for 1 in range(self.n + 1)]
gelf.outof = [1 for 1 in range{self.n + 1)]
gelf.heapifv ()

heapify(zeif):
for 1 in range(seif.n/2, 0, -1):
gelf.siftdown (i, self.n)

siftdown(self, i, n):
" sift down for a minHeap.

MinHeap
code
part 1

i is the heap index, (not the index into the key arzay)"""

5 = zelf.outof[1]
temp = self.key[s]
while 2*1i <= n:
c o= 2*%i # o iz for child
if ¢ < n and =elf.key[selif.outof[c+l]] <
zelf.key[=elf.outof[c]]:

We will not discuss the
details in class; the code is
mainly here so we can look

at it and see that the

o +=1

if sslf.key[sslf.outofl[c]] < temp: running times for the
seif.gutof[i] = Self.gutof[;] various methods are as
gelf.into[=elf.outof[1]] = 1)

elze: advertised o o
break - o=

P o .—‘

self.outof[1] = s

gelf.intols] = i i

10

MinHeap code part 2

def deletei{szelfl):

def

def

"mrdelete the mimimmn value from this heap, returning its wvalue"""
result = selif.outof[l]

temp = self.outof[1]

gelf.outof[l] = =self.outof[selif.n]

gelf.into[gelf.outof[1]] = 1

self,outcf[self.n] = temp

gelf.intoltenp] = self.n

self.n —=1

self.siftdown{l, =self.n)

return result

isIn{zelf, w):
rrr returns True iff w is in this heap """
return self.into[w] <= =zelf.n

keyval (zelf, w):
v returns the weight corresponding to wi'"
return gelf.key[w]

L J
NOTE: delete could be simpler, but | kept pointers to the deleted - o

nodes around, to make it easy to implement heapsort later. N calls to
delete() leave the outof array in indirect reverse sorted order.

MinHeap code part 3

def decrease(self, w, newWeight):
" change the weight corresponding to
vertex w to newWeight (which must be no
larger than its current weight) """
p is for parent, c is for child
gelf.key([w] = newWeight
c = gelf.into[w]
p = c/f2
while p >= 1:
1f self.key[self.outof[p]] <= newWeight:
break
gelf.outof[c] = self.outof(p]
gelf.into[self.ocutof[c]] =

c=p
p=c/2 »
gelf.outof[c] = w .

gelf.into[w] = ¢ J

11

Preview: Data Structures for Kruskal

e A sorted list of edges (edge list, not adjacency list)

Disjoint subsets of vertices, representing the
connected components at each stage.

— Start with n subsets, each containing one vertex.
— End with one subset containing all vertices.

Disjoint Set ADT has 3 operations:
— makeset(i): creates a singleton set containing i.

— findset(i): returns a "canonical" member of its subset.
e |l.e., ifiandjare elements of the same subset,
findset(i) == findset(j)

— union(i, j): merges the subsets containing i and j intoa e

single subset. ="

Example of operations

e makeset (1)

e makeset (2) * union(4, 6)
* makeset (3) e union (1,3)
e makeset (4) * union(4, 5)
e makeset (5) e findset(2)
e makeset (6) ¢ findset(5)

What are the sets after these operations?

12

Kruskal Algorithm

Assume vertices are numbered 1..n What can we

(n=|V|) say about
Sort edge list by weight (increasing order) ef_f|C|ency_ of
for i = 1..n: makeset(i) this algorithm
i, count, tree = 1, 0, [] (in terms of |V|
and |E|)?

while count < n-1:
1T findset(edgelist[i].v) I=
findset(edgelist[i].-w):
tree += [edgelist[i]]
count += 1
union(edgelist[i].v, edgelist[i1].w)

1 += 1 " e

return tree v

Set Representation

e Each disjoint set is a tree, with the "marked"
element as its root
e Efficient representation of the trees:
— an array called parent
— parent[i] contains the index of i’s parent.
— If i is a root, parent[i]=i

A\ VAN
2 4

/
8 i |1]2[3]|4]|5]|6]7

parent[i]l 1 | 5|7 |5 |5 |7 |7 . e

{

13

Using this representation

makeset(i):
findset(i):
mergetrees(i,j):

— assume that i and j are the marked elements from
different sets.

union(i,j):
— assume that i and j are elements from different
sets

Analysis

Assume that we are going to do n makeset
operations followed by m union/find
operations

time for makeset?

worst case time for findset?

worst case time for union?

Worst case for all m union/find operations?
worst case for total?

What if m<n? _- S

Write the formula to use min

14

Can we keep the trees from growing so fast?
e Make the shorter tree the child of the taller one
e What do we need to add to the representation?
e rewrite makeset, mergetrees

e findset & union
are unchanged.

e What can we say about the maximum height
of a k-node tree?

Theorem: max height of a k-node tree T
produced by these algorithms is |_Ig k]

e Base case...
e Induction hypothesis...

e Induction step:
— Let T be a k-node tree

— Tis the union of two trees:
T, with k; nodes and height h;
T, with k, nodes and height h,

— What can we say about the heights of these trees?

— Case 1: hyzh,. Height of T is

— Case 2: h;=h,. WLOG Assume k;>k,. Then k,<k/2. Height of
treeis1+h2<..

e

Q37-5 |

15

Worst-case running time

e Again, assume n makeset operations, followed
by m union/find operations.

e Ifm>n

e Ifm<n

Speed it up a little more

e Path compression: Whenever we do a findset
operation, change the parent pointer of each
node that we pass through on the way to the
root so that it now points directly to the root.

e Replace the height array by a rank array, since
it now is only an upper bound for the height.

e Look at makeset, findset, mergetrees (on next
slides)

16

Makeset

This algorithm represents the set {i} as a one-node
tree and initializes its rank to O.

def makeset3(1):
parent[i] = 1
rank[1] = O

Findset
e This algorithm returns the root of the tree to
which i belongs and makes every node on the
path from i to the root (except the root itself)
a child of the root.

def findset(i):
root = 1
while root != parent|[root]:
root = parent[root]
J = parent[i]
while j = root:
parent[1] = root
i =]
J = parent[i] -
return root

{

17

Mergetrees

This algorithm receives as input the roots of two
distinct trees and combines them by making the
root of the tree of smaller rank a child of the other
root. If the trees have the same rank, we arbitrarily
make the root of the first tree a child of the other
root.
def mergetrees(i,j) :

if rank[i] < rank[j]:

parent[i] = j
elif rank[i] > rank[j]:

parent[j] = 1
else: =
parent[i] = j = e

rank[j] = rank[j] + 1 v

Analysis

e |t's complicated!

e R.E. Tarjan proved (1975)*:
—Lett=m+n
— Worst case running time is ©(t a(t, n)), where
a is a function with an extremely slow growth rate.
— Tarjan's a:
— a(t, n) <4 forall n < 1019728

e Thus the amortized time for each operation is
essentially constant time.

Accordmg to Algorithms by R. Johnsonbaugh and M. Schaeﬁ-}r,,_..
2004, Prentice-Hall, pages 160-161

18

